A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
نویسندگان
چکیده
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach.
منابع مشابه
3D Human Tracking in a Top View Using Depth Information Recorded by the Xtion Pro-Live Camera
This paper addresses the problem of the tracking of 3D human body pose from depth image sequences given by a Xtion Pro-Live camera. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model. Although, most of the time for the video surveillance, the camera is placed above the persons, all the tracking methods use the ...
متن کاملArticulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors
We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges in this research. First, we integrate two registration techniques that have a complementary natur...
متن کاملMulti-activity Tracking in LLE Body Pose Space
We present a method to simultaneously estimate 3d body pose and action categories from monocular video sequences. Our approach learns a lowdimensional embedding of the pose manifolds using Locally Linear Embedding (LLE), as well as the statistical relationship between body poses and their image appearance. In addition, the dynamics in these pose manifolds are modelled. Sparse kernel regressors ...
متن کاملStatistical models for human body pose estimation from videos
To investigate the task of multidimensional continuous inference from video sequences on a concrete example application, we focus on the problem of articulated 3D human tracking from monocular video. This is an interesting topic because of its relevance for biological vision systems, as well as its many applications in various domains. Estimating body pose and motion of humans is a challenging ...
متن کاملHierarchical Approach for Articulated 3D Pose-Estimation and Tracking
In the recent years we presented a number of methods for a fully automatic pose estimation [5, 7] and tracking [6] of human bodies in 2D [5] and 3D [6]. Initialization and failure recovery in these methods are facilitated by the use of loose-limbed body model [7] in which limbs are connected via learned probabilistic constraints. The pose estimation and tracking can then be formulated as an inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2010